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Warming and shrub encroachment decrease decomposition in arid alpine and
subalpine ecosystems
Laurel M. Brighama, Ellen H. Escha, Christopher W. Koppb, and Elsa E. Clelanda

aDivision of Biological Sciences, Ecology, Behavior & Evolution Section, University of California San Diego, La Jolla, California, USA;
bDepartment of Botany, The Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada

ABSTRACT
Climate change is shifting species distributions and altering plant community composition world-
wide. For instance, with rising temperatures shrubs are encroaching into alpine ecosystems,
resulting in important implications for ecosystem functioning. In particular, woody-plant
encroachment could slow decomposition in systems traditionally dominated by herbaceous
species. To evaluate how litter decomposition responded jointly to warming and shrub presence,
we conducted a passive warming chamber experiment in subalpine and alpine plant communities
in the White Mountains of California. Passive warming chambers were placed over plots with and
without the range-expanding sagebrush Artemisia rothrockii at two elevations. Litter from A.
rothrockii and the common perennial herb Trifolium andersonii decomposed for two years under
the experimental treatments. Nitrate availability was measured with ion-exchange resins during
the same time period. Warming decreased decomposition rates overall, associated with decreased
soil moisture, but did not influence soil nitrate availability. Sagebrush presence decreased both
decomposition rates and nitrate availability. Hence, future warming in this system will likely
reduce decomposition rates, both directly and indirectly, via shrub encroachment. However,
impacts on nutrient mineralization are less clear. These findings highlight how shifting species
composition, through processes such as range expansions, can influence ecosystem responses to
climate change.
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Introduction

High-altitude and high-latitude biomes are predicted to
experience disproportionate amounts of warming in the
twenty-first century (IPCC 2007; Nogués-Bravo et al.
2007). Warming may alter the rate of nutrient cycling
and the associated release of carbon dioxide (CO2) to
the atmosphere and thus have important consequences
for the balance of carbon (C) sequestered versus released
in these cold biomes (Gorham 1991; Mack et al. 2004;
Schuur et al. 2009; Väisänen et al. 2014; Webb et al. 2016;
Welker et al. 2004). Plant litter is a C pool that has the
potential to contribute to this balance (Grogan et al.
2001), and litter decomposition rates may be directly or
indirectly changed by global warming.

Rising temperatures associated with climatic warming
are predicted to have strong, direct consequences for the
physical processes governing decomposition. Low tem-
peratures limit decomposition rates in alpine systems
(Seastedt and Adams 2001; Seastedt, Walker, and Bryant

2001; Withington and Sanford 2007); therefore, warmer
temperatures are predicted to increase enzymatic activ-
ities and nutrient cycling rates (Coûteaux, Bottner, and
Berg 1995; Davidson et al. 2006). Alternatively, warming
could cause earlier snowmelt and greater water stress in
the latter part of the summer (Parida and Beurmann
2014). Reduced soil moisture can strongly limit litter
decomposition (Bunnell et al. 1977; Swift, Heal, and
Anderson 1979), especially in the alpine (Aerts 2006;
Bryant et al. 1998; Fisk, Schmidt, and Seastedt 1998;
O’Lear and Seastedt 1994; Seastedt, Walker, and Bryant
2001; Webber et al. 1976; Withington and Sanford 2007).
Hence, warming has the potential to either increase or
decrease decomposition rates in alpine systems, mediated
through an effect on soil moisture.

In addition to the direct effects of warming, shifts in
species composition can indirectly influence ecosystem
process rates. As montane systems warm, some species
are able to shift their elevational ranges upward to track
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climatic niches (Doak and Morris 2010; Gavazov 2010;
Gottfried et al. 1999; Klanderud and Birks 2003; Kopp and
Cleland 2014). For instance, woody shrubs are encroach-
ing from lower elevation areas into the alpine, with
important implications for ecosystem processes (Myers-
Smith et al. 2011; Wookey et al. 2009), such as decom-
position. Shrub litter generally decomposes more slowly
than forb and graminoid litter, and hence warming may
indirectly slow decomposition in alpine systems by facil-
itating shrub encroachment (Cornelissen et al. 2007).

Shrub encroachment may also alter decomposition
rates via effects on the microenvironment. For instance,
shrubs tend to have higher stature than the prostrate
species that typically dominate alpine zones; thus, shrubs
could reduce the photodegradation of litter through shad-
ing (Sturm et al. 2000) and slow decomposition (Austin
and Vivanco 2006; Henry, Brizgys, and Field 2008).
Shrubs could also enhance snow accumulation (Essery
and Pomeroy 2004; Liston et al. 2002; Pomeroy et al.
2006), which may promote increased microbial activity
and faster nutrient cycling via enhanced thermal insula-
tion from snow trapped beneath the shrub canopy (Sturm
et al. 2000, 2005; Seastedt and Adams 2001; Schimel,
Bilbrough, and Welker 2004; but also see DeMarco,
Mack, and Bret-Harte 2014). Shrub encroachment into
alpine ecosystems is likely to alter decomposition rates,
yet the direction depends both on how shrubs influence
the microenvironment and the relative decomposition
rates of shrubs versus resident species.

The White Mountain range of California provides an
appropriate study site for investigating the impact of
warming and shrub encroachment on nutrient cycling.
Located in the rain shadow of the Sierra Nevada
Mountains, the alpine and subalpine vegetation zones
receive less precipitation than many other montane
systems and the plant communities have a long history
of study (Hall 1991; Rundel, Gibson, and Sharifi 2005).
In a forty-nine-year resurvey of sites initially character-
ized by Mooney et al. (1962), Kopp and Cleland (2014)
documented an increase in the elevational range mar-
gin and abundance of Artemisia rothrockii, an endemic
species of sagebrush common in the subalpine area of
the White Mountains, during a period of rising tem-
perature (0.98°C increase in mean growing season tem-
perature) and decreasing precipitation (53 mm decrease
in mean annual precipitation). In contrast to A.
rothrockii, the previously abundant nitrogen (N)-fixing
perennial herb Trifolium andersonii experienced a
range contraction with decreased abundance at the
lower range margin and no corresponding expansion
of its upper limit (Kopp and Cleland 2014). The expan-
sion of Betula, a genus common in mesic alpine and
Arctic tundra systems, has been the subject of several

decomposition studies (e.g., DeMarco, Mack, and Bret-
Harte 2014; McLaren et al. 2017; Myers-Smith and Hik
2013), but the impact of shrub expansion in more xeric
alpine systems, and across a wider range of taxa, such
as Artemisia, needs to be better characterized.

To understand the sensitivity of alpine litter
dynamics to the direct and indirect (shrub encroach-
ment) effects of climate warming, we investigated the
impact of experimental warming and shrub presence
on the early stages of litter decomposition, when mass
loss and mineralization rates are most rapid. While
several studies have examined how warming or shrub
encroachment affect litter decomposition indepen-
dently, we also examined the interaction of these fac-
tors. During two years (September 2013–September
2015) and at two elevations (subalpine and alpine
zones), we examined decomposition rates of two spe-
cies with ranges that are responding differently to cli-
mate change: A. rothrockii and T. andersonii. We
predicted that warming, induced by passive open-top
chambers (OTCs), could produce one of two responses:
(1) warming could lead to greater decomposition via
increased microbial activity or (2) warming could
decrease decomposition due to the soil moisture limita-
tion of microbial processes. We expected that the pre-
sence of A. rothrockii would indirectly affect
decomposition rates via microclimate changes: shrubs
could promote increased microbial activity through
enhanced snow accumulation and thermal insulation
or shrubs could reduce photodegradation of litter
through shading (Sturm et al. 2000). A separate shading
treatment allowed us to test this last hypothesis.

Materials and methods

Experimental design

This experiment was conducted at two elevations in the
White Mountains (Inyo County, CA, USA) utilizing the
University of California White Mountain Research
Station. The subalpine site was located at 3,100 m
(37° 29.9ʹ N, 118° 10.3ʹ W) and the alpine site at
3,750 m (37° 34.1ʹ N, 118° 14.3ʹ W). Historical averages
(1956–1985) from weather stations near both study
sites show that the low elevation Crooked Creek
Station (3,094 m) has a mean annual precipitation of
327 mm yr−1 and a mean annual temperature of 0.9°C.
The high elevation Barcroft Station (3,800 m) has a
mean annual precipitation of 456 mm yr−1 and a
mean annual temperature of −1.7°C (Hall 1991).

In 2011, experimental plots were established in the
subalpine (3,100 m) and alpine (3,750 m) to evaluate the
influence of warming and sagebrush encroachment on
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plant communities at both elevations. Plots were estab-
lished such that they had similar species composition,
except for the presence or absence of A. rothrockii. With
the exception of the presence of A. rothrockii, treatments
were assigned randomly: (1) warmed plots with A.
rothrockii (Warm Shrub), (2) warmed plots without A.
rothrockii (Warm Open), (3) unwarmed plots with A.
rothrockii (Control Shrub), (4) unwarmed plots without
A. rothrockii (Control Open), and (5) shaded plots with-
out A. rothrockii (Shade; Figure 1). Each treatment had
four replicates at each elevation for a total of forty
circular plots, each with an area of 0.785 m2. Plots
were established at least 2 m apart and shared a com-
mon granitic-derived soil substrate. Following methods
developed by the International Tundra Experiment
(Molau and Mølgaard 1996), OTCs were 1 m in dia-
meter and were constructed with 5 oz clear Crystalite
fiberglass (thickness = 1.1 mm, light transmission = 90%;
Ridout Plastics Company Inc., San Diego, CA, USA).
Open-top chambers were in place year-round. The
shading treatment was built by suspending a fiberglass
window screen 20 cm above the soil surface. Shading
structures intercepted 60 percent of the light, and the
shade structures were removed for the nongrowing sea-
son (from October 13, 2013 to May 24, 2014, and from
September 15, 2014 to May 5, 2015) to prevent impacts
on snow cover.

Surface temperature and soil moisture

To monitor surface temperature, iButton temperature
loggers were secured in 5 cm PVC pipe (to block solar
radiation) and were placed in three plots per treatment
at each elevation. Temperatures were recorded hourly.
Volumetric soil moisture content (0–10 cm depth) was
measured in all plots in each treatment at the low
elevation, taking three samples per plot using a
Spectrum Field Scout TDR 100 portable volumetric

soil moisture meter (Spectrum Technologies, Aurora,
IL, USA). This sensor could only be used at the low
elevation site because the rocky substrate at the high
elevation site prevented insertion of the soil moisture
probes.

Litter decomposition

To compare litter decomposition across treatments,
on October 13, 2013, litterbags containing 1.5 g of
dry litter were deployed within the experimental fra-
mework. Litterbags contained material from either T.
andersonii or A. rothrockii, using litter collected dur-
ing August 2013. Litterbags were constructed using
1 mm mesh nylon netting material to contain the
small leaves. Eight replicates were collected for both
litter types from each treatment at both elevations
(two litterbags per litter type per plot) on September
15, 2014 and September 17, 2015, resulting in 320
litterbags. On collection, litter was separated from the
mesh, dried, and weighed. A subsample was ground
and ashed in a muffle furnace at 600°C for six hours
to calculate ash-free mass loss. Ash-free mass at
deployment was subtracted from ash-free mass at a
collection date and divided by ash-free mass at
deployment to get a value for mass loss. The decay
constant (k, y−1) was fitted to the data using a single
exponential model, Xt/X0 = e−kt with Xt and X0 being
the initial ash-free mass and the mass at time t,
respectively (Adair, Hobbie, and Hobbie 2010). We
used the nls function to fit nonlinear least squares to
estimate k on untransformed data.

Nitrate availability

Treatment effects on soil nutrient availability were
assessed using ion-exchange resin bags (Giblin et al.
1994) deployed during four time periods. These four
time periods consisted of growing (from May 24,
2014 to September 15, 2014, and from May 5, 2015
to September 17, 2015) and nongrowing (from
October 13, 2013 to May 24, 2014, and from
September 15, 2014 to May 5, 2015) season time
points. Resin bags were constructed using 2 g of
Dowex Marathon MR-3 mixed ion-exchange resins
(Giblin et al. 1994). At deployment, resin bags were
buried 5 cm below the soil surface in each treatment.
On collection, bags were washed with deionized
water to remove soil particles, then extracted using
a 2.0 M NaCl/0.1 M HCl solution, which was shaken
along with the resins for one hour, filtered through
pre-leached Whatman #1 filters, and analyzed with
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Figure 1. Schematic of the experimental design, with four
replicate plots of each of the five treatments placed at two
elevations: 3,100 m in subalpine vegetation and 3,750 m in
alpine vegetation.
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subsequent colorimetric analyses (Doane and
Horwáth 2003).

Statistical analysis

Statistical analyses were performed in R v. 3.3.2 (R
Development Core Team 2017). Data were tested for
normality and homogeneity of variance before analysis.
The k constants were analyzed with mixed-effects mod-
els where species, warming, shrub presence, and eleva-
tion were included as fixed effects (excluding the
shading treatment) and plot was a random effect. The
effect of shading on decomposition was analyzed using
two mixed-effects models on subsets of data that
excluded the warming treatment and used two levels
of Shrub treatment (Control Open and Shade; Control
Shrub and Shade). The comparison between the
Control Open and Shade treatments was drawn to
determine the effect of shading on litter decomposition,
while the comparison between Control Shrub and
Shade treatments was made to evaluate whether their
effects on decomposition were similar, which would
confirm that shading was the mechanism behind the
effect of shrubs.

Nitrate availability was log-transformed to meet
assumptions of normality. We ran a mixed-effects
model to analyze nitrate availability with warming,
shrub presence, and elevation included as fixed effects
(excluding the shading treatment) and plot as a random
effect. The effect of litter decomposition rate on nitrate
availability was tested with a linear model where log-
transformed nitrate availability was predicted by k
values, both averaged at the plot level.

Significance of all factors was evaluated with Type II
tests using the ANOVA function in the car package
(Fox and Weisberg 2011). When appropriate, multiple
comparisons of specific treatments were made using
Tukey’s post hoc analyses via the lsmeans package
(Lenth 2016).

Results

Climate data

The average mean temperature and precipitation
throughout the study duration (2013–2015) was
warmer and drier than the historical averages (see
the “Materials and Methods” section for historical
climate means). During the study, the average mean
temperature was 2.97 ± 0.50°C at the low elevation
site (2.07°C higher than the historical average) and
0.60 ± 0.50°C at the high elevation site (2.30°C
higher than the historical average; PRISM Climate

Group 2018). Annual precipitation was
279 ± 104 mm at the low elevation site (14.7 percent
lower than the historical average) and was
300 ± 119 mm at the high elevation site (34.2 per-
cent lower than the historical average; PRISM
Climate Group 2018). These deviations from the
long-term average climate were likely the result of
documented warming at these sites (Kopp and
Cleland 2014) and the historic drought that
California experienced between 2012 and 2015
(Margulis et al. 2016).

Surface temperature and soil moisture

Surface temperatures were on average 1.63°C higher
in the warmed treatment compared to the unwarmed
treatment (Table 1; F1,16 = 39.9, P < 0.001) and on
average 1.11°C higher at the low elevation compared
to the high elevation (Table 1; F1,16 = 15.9,
P = 0.001). The presence of A. rothrockii (hereafter
referred to as shrub presence) did not statistically
influence temperature in the plots. While soil moist-
ure was only examined at the low elevation, there
was an interaction between the warmed treatment
and shrub presence (F1,14 = 5.48, P = 0.035) such
that there was 24.5 percent lower soil moisture in the
warmed treatment containing shrubs (Warm Shrub)
compared to the unwarmed treatment with shrubs
(Control Shrub; Tukey’s HSD, P = 0.021).

Litter decomposition

Averaged across all elevations, species, and treatments,
litter mass loss was approximately 41.1 ± 8.69 percent
during the two-year study period. Shrub presence slo-
wed decomposition, leading to 13.0 percent slower
decomposition compared to open plots (Table 2).
While warming tended to slow litter decomposition
(Table 2), the magnitude of the effect depended on
both elevation and litter species identity (Figure 2,

Table 1. The surface temperature (°C) and soil moisture (per-
cent volumetric water content) across treatments. Soil-moisture
data were only collected at 3,100 m.

Surface Temperature Soil Moisture

Manipulation Mean SD Mean SD

Warm
Control 2.33 0.968 7.14 1.10
Warm 3.96 0.722 6.24 0.59
Shrub
Open 2.92 1.24 6.62 0.84
Sagebrush 2.90 1.11 6.89 1.21
Elevation
3,100 3.47 0.884
3,750 2.36 1.26
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Table 2). Artemisia rothrockii decay was not affected by
warming at either elevation (Figure 2a), while T. ander-
sonii decomposition was lower in the warmed

treatment at the low elevation (Figure 2b). See Table 3
for average k values across treatments.

Shading treatment

To determine whether shading was a mechanism
behind the significantly lower decay constants observed
with shrub presence, two planned comparisons were
made. One compared the Shade treatment to the
unwarmed treatment without shrubs (Control Open)
for both litter types at both elevations, while the second
made the same comparison between the Shade treat-
ment and the unwarmed treatment with shrubs
(Control Shrub). There was no main effect of the
Shade treatment in either model, but there was an
interaction between the Shade treatment and litter
type in both models (Figure 3; Shade × Species: Shade
vs. Shrub, X2 = 13.85, P < 0.001; Shade vs. Open,
X2 = 17.81, P < 0.001). In the model comparing Shade
and Control Shrub treatments, there was higher A.
rothrockii decomposition in the Shade treatment
(Figure 3a), while T. andersonii was unaffected
(Figure 3b). However, in the comparison between the
Shade and the Control Open treatment, there was lower
T. andersonii decomposition in the Shade treatment
(Figure 3b), while A. rothrockii was unaffected
(Figure 3a).

Nitrate availability

There was a positive relationship between decompo-
sition and nitrate (NO3

−) availability (adjusted

Table 2. Mixed-effects model analysis of decay constants (k y−1).
The factorial design consisted of two species of litter (A. rothrockii
and T. andersonii), two temperature treatments (Warm; warmed
and control), and two shrub treatments (Shrub; with and without)
across two elevations (Elevation; subalpine at 3,100 m and alpine
at 3,750 m). Significant effects (P < 0.05) are in bold.
Manipulation df Chi-square P

Species 1 4.190 0.041
Warm 1 18.997 < 0.001
Shrub 1 13.472 < 0.001
Elevation 1 26.986 < 0.001
Species × Warm 1 0.303 0.582
Species × Shrub 1 1.041 0.308
Warm × Shrub 1 0.018 0.894
Species × Elevation 1 1.161 0.281
Warm × Elevation 1 2.811 0.094
Shrub × Elevation 1 0.187 0.665
Species × Warm × Shrub 1 0.540 0.462
Species × Warm × Elevation 1 5.008 0.025
Species × Shrub × Elevation 1 0.239 0.625
Warm × Shrub × Elevation 1 0.079 0.779
Species × Warm × Shrub × Elevation 1 0.001 0.972

Table 3. Decay constants (k y−1) across treatments grouped by
species.

A. rothrockii T. andersonii

Manipulation Mean SD Mean SD

Warm
Control 0.373 0.062 0.403 0.067
Warm 0.320 0.059 0.337 0.077
Shrub
Open 0.365 0.065 0.401 0.078
Sagebrush 0.327 0.062 0.339 0.068
Elevation
3,100 0.388 0.053 0.399 0.086
3,750 0.305 0.050 0.341 0.060
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Figure 2. The decay constants (k y−1) for A. rothrockii (a) and T. andersonii (b) at each elevation (3,100 m and 3,750 m) and
grouped by warming treatment. Bars sharing letters are not significantly different (Tukey’s HSD, P > 0.05). Error bars indicate
± 1 SE of the mean.
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R2 = 0.21, P = 0.005). Shrub presence decreased
NO3

− ppm/g (Table 4), resulting in 41.2 percent
lower NO3

− availability in shrub plots compared to
open. Additionally, there was 53.8 percent lower
NO3

− at the low elevation (Table 4). There was no
effect of warming on NO3

− availability; see Table 5
for average NO3

− ppm/g across treatments.

Discussion

Overall, shrub encroachment decreased decomposition
and NO3

− availability. Alternatively, warming did not
influence NO3

− availability, and its effect on decomposi-
tion was dependent on elevation and litter type. We
found that T. andersonii, a common alpine plant in this
region, experienced more variable decomposition
responses to warming than A. rothrockii, which did not
show warming-driven differences in decomposition.

Litter decomposition

Although warming decreased decomposition rates as a
main effect, we also found a higher-order interaction
among warming, litter type, and elevation, suggesting
that the impact of warming on decomposition rates can
vary across species and environmental contexts. Litter
from N-fixing species, such as T. andersonii, often
decomposes more quickly in comparison to non-fixing
species (Vitousek and Walker 1989). Hence, as
expected, T. andersonii litter decomposed more quickly
than A. rothrockii, overall. However, the two litter types
responded differently to the Warm treatment; A.
rothrockii was not impacted by warming and T. ander-
sonii decomposition was only lowered by warming at
the low elevation site. This result highlights the varia-
bility of litter decomposition responses to predicted
warming, and suggests that future experimentation
should employ a wider array of taxa litter to better
evaluate the generality of these patterns.
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Figure 3. The decay constants (k y−1) for A. rothrockii (a) and T. andersonii (b) in a comparison between Shade (gray bars) and
Control Open (white bars) and also Shade (gray bars) and Control Shrub (green bars) as per the two models run. *P < 0.05 (Tukey's
HSD). Error bars indicate ± 1 SE of the mean.

Table 4. Mixed-effects model analysis of log-transformed NO3
−

ppm/g. The factorial design consisted of two temperature treat-
ments (Warm; warmed and control) and two shrub treatments
(Shrub; with and without) across two elevations (Elevation;
subalpine at 3,100 m and alpine at 3,750 m). Significant effects
(P < 0.05) are in bold.
Manipulation df Chi-square P

Warm 1 0.088 0.766
Shrub 1 7.713 0.005
Elevation 1 7.082 0.008
Warm × Shrub 1 0.071 0.789
Warm × Elevation 1 0.319 0.572
Shrub × Elevation 1 0.732 0.392
Warm × Shrub × Elevation 1 0.008 0.930

Table 5. Untransformed NO3
− ppm/g across treatments grouped

by season.
Growing Season Nongrowing Season

Manipulation Mean SD Mean SD

Warm
Control 0.151 0.272 0.339 0.330
Warm 0.114 0.098 0.432 0.390
Shrub
Open 0.166 0.266 0.439 0.281
Sagebrush 0.098 0.093 0.336 0.427
Elevation
3,100 0.183 0.271 0.537 0.440
3,750 0.081 0.055 0.246 0.188
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Furthermore, that T. andersonii litter decomposed
more slowly only at the low elevation site suggests
that a characteristic of the low elevation interacted
with warming to slow decomposition. One potential
mechanism is the lower precipitation experienced at
this elevation compared to the high elevation, especially
during the drought throughout this study. This effect
may have been compounded by the presence of OTCs,
which can decrease soil moisture (Allison and Treseder
2008; Zhang et al. 2014), as we found at our low eleva-
tion site. Low soil moisture strongly limits decomposi-
tion (Aerts 2006; Bryant et al. 1998; Shaw and Harte
2001); hence, soil-water evaporation, as a result of
increased temperatures, can limit potential tempera-
ture-induced increases in decomposition (Allison and
Treseder 2008; Arft et al. 1999; Mooney et al. 1999).
Although the low precipitation during this study was
unusual across both elevations, particularly at the low
elevation, droughts may become increasingly common
with climate change (Fischer, Beyerle, and Knutti 2013;
Wetherald 2010). Accordingly, we predict a greater
sensitivity of decomposition at the low elevation com-
pared to the high elevation associated both with warm-
ing and drought-associated climatic change.

A potential artifact of warming experiments using
OTCs is snow accumulation (Dorrepaal et al. 2003;
Aerts, Cornelissen, and Dorrepaal 2006; but also see
Marion et al. 1997), but this effect can vary interannu-
ally depending on snowfall (DeMarco, Mack, and Bret-
Harte 2011). Although we did not explicitly measure

snowpack in our experiment, we expect that the OTCs
played a negligible role in snow accumulation because
of the strong drought and minimal snowpack during
the study period. Qualitative observations suggested
that warming chambers did not accumulate more
snow than the surrounding areas (Figure 4).

As with warming, shrub presence reduced decom-
position rates as a main effect. We found no differ-
ence in soil moisture due to shrub presence, and a
past study at the same location demonstrated variable
differences in soil moisture under A. rothrockii versus
in open areas (Collins et al. 2016). Consequently, the
influence of shrub presence on soil moisture is not
likely to mechanistically explain the decrease in litter
decomposition rates under shrubs. Results from our
separate shading treatment demonstrated litter-specific
responses, suggesting that shading is not the mechan-
ism linking consistently lower decomposition with
shrub presence. On the other hand, many species of
Artemisia in North America produce secondary che-
mical compounds such as terpenes and polyphenols
(Turi, Shipley, and Murch 2014). These compounds
can decrease the turnover of organic matter and the
rate of mineralization (Kuiters 1990). Therefore, it is
possible that shrub presence led to lower rates of
decomposition and nitrate availability (discussed
further on) because of the leaching of phenolics into
the soil. Shrubs decreased decomposition regardless of
litter type and elevation, suggesting that the impact is
less variable than is warming. Because warming is

Figure 4. An open-top chamber in the center of the photo (square) and a shrub in the bottom right (circle). Photo taken March 5,
2013, when snow cover is typically high during non-drought years. Notice the lack of snow accumulation with both of these
treatments.
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accompanied by shrub encroachment, the interaction
between the two is a net decrease in decomposition.

Nitrate availability

While NO3
− availability and litter decomposition

were positively related, the proportion of explained
variance was low. The low explanatory power of
decomposition for NO3

− availability may stem from
the apparent decoupling of NO3

− availability and
litter decomposition in the warming treatment.
Warming did not influence NO3

− availability, even
with lower decomposition seen in the warming treat-
ment. While C and N mineralization are typically
linked (McGill and Cole 1981), our results are similar
to those found by Allison and Treseder (2008), who
saw a decoupling of soil respiration and N availability
under experimental warming in the arctic tundra.

There was, however, a negative effect of shrub
presence on NO3

− availability. One possible explana-
tion is the increased rates of nitrate uptake by plots
with shrubs compared to open plots. Our finding is
in contrast to studies that have found greater NO3

−

and net N mineralization under shrubs resulting
from snow trapping by shrubs and consequent soil
insulation by snow (Sturm et al. 2005). Because this
study took place during a drought and resultant low
snow levels, there was likely little shrub–snow accu-
mulation. Instead, lower NO3

− availability may result
from greater immobilization; higher microbial bio-
mass N under the same shrub species was observed
at this site (Collins et al. 2016), likely the result of the
presence of phenolics (Bowman et al. 2004; Turi,
Shipley, and Murch 2014). Our results highlight the
variability in strength of the coupling of C and N
cycles at this site, making predictions about the con-
sequences of climate on nutrient cycling more chal-
lenging. Furthermore, they suggest a greater need for
the study of climate-change effects on xeric montane
systems.

Conclusion

In the subalpine and alpine of the White Mountain
range in California, shrub presence and warming
decreased decomposition, although the effect of the
latter was variable by litter type and elevation.
Continued warming may allow further A. rothrockii
expansion into the alpine, which may in turn lower
decomposition. While a direct impact of lower decom-
position rates is less C released into the atmosphere,
there may be indirect impacts on other aspects of C
cycling. In plots containing shrubs, there was both

lower decomposition and NO3
− availability. These

alterations to nutrient cycling may impact primary
production and species relative abundances at the com-
munity level. In sum, this study demonstrates the com-
plex potential for indirect effects of climate change via
shifting species composition and important ramifica-
tions for ecosystem-level functioning.
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